Two types of amino acid substitutions in the succinate dehydrogenase complex subunit confer resistance to benzovindiflupyr in Colletotrichum sublineola

Author:

Deng Liyuan1ORCID,Sun Weijin1,Yu Yang1,Yang Yuheng1ORCID,Fang Anfei1,Tian Binnian1,Wang Jing1,Bi Chaowei1

Affiliation:

1. College of Plant Protection, Southwest University Chongqing China

Abstract

AbstractBackgroundColletotrichum sublineola is the pathogenic fungus that causes sorghum anthracnose, which seriously threatens sorghum yield. Benzovindiflupyr is a succinate dehydrogenase inhibitor with good control effects on various crop diseases. However, the control of sorghum anthracnose by benzovindiflupyr and the risk of resistance to benzovindiflupyr in this pathogen are not well studied. Therefore, this study aimed to evaluate the benzovindiflupyr resistance and underlying mechanisms in C. sublineola.ResultsAnalysis of the sensitivity of 126 C. sublineola strains to benzovindiflupyr revealed that the average EC50 of the fungicide was 0.0503 ± 0.0189 μg mL−1, with a unimodal normal distribution curve. The survival fitness of 10 benzovindiflupyr‐resistant strains decreased to varying degrees compared with that of the wild‐type parental strains. Additionally, a significant positive cross‐resistance was observed between benzovindiflupyr and carboxin. Sequencing analyses identified two mutation sites, CsSdhBH249Y and CsSdhCG81V, in the resistant strains. Further molecular docking and site‐directed mutagenesis experiments confirmed that the CsSdhBH249Y and CsSdhCG81V substitutions conferred resistance to benzovindiflupyr in C. sublineola.ConclusionColletotrichum sublineola is sensitive to benzovindiflupyr and shows a moderate resistance risk to benzovindiflupyr. Two specific point substitutions, CsSdhBH249Y and CsSdhCG81V, are responsible for the resistance of C. sublineola to benzovindiflupyr. These findings offer a theoretical foundation for strategic application of the fungicide in controlling sorghum anthracnose, and for potentially delaying the emergence and progression of resistance. © 2024 Society of Chemical Industry.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3