Author:
Sang Mee Kyung,Kim Ki Deok
Abstract
We investigated direct and indirect effects of compost water extracts (CWEs) from Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 for the control of anthracnoses caused by Colletotrichum coccodes on pepper and C. orbiculare on cucumber. All tested CWEs significantly (P < 0.05) inhibited in vitro conidial germination and appressorium formation of the fungal pathogens; however, DL-β-amino-n-butyric acid (BABA) failed to inhibit the conidial development of the pathogens. Direct treatments of the CWEs and BABA on pepper and cucumber leaves at 1 and 3 days before or after inoculation significantly (P < 0.05) reduced anthracnose severities; Iljuk-3, Shinong-9, and BABA for pepper and Iljuk-7 for cucumber had more protective activities than curative activities. In addition, root treatment of CWEs suppressed anthracnoses on the plants by the pathogens; however, CWE treatment on lower leaves failed to reduce the diseases on the upper leaves of the plants. The CWE root treatments enhanced not only the expression of the pathogenesis-related (PR) genes CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, and CaPR-10 in pepper and PR1-1a, PR-2, PR-3, and APOX in cucumber but also the activity of β-1,3-glucanase, chitinase, and peroxidase and the generation of hydrogen peroxide in pepper and cucumber under pathogen-inoculated conditions. However, the CWE treatments failed to induce the plant responses under pathogen-free conditions. These results indicated that the CWEs had direct effects, reducing anthracnoses by C. coccodes on pepper leaves and C. orbiculare on cucumber leaves through protective and curative effects. In addition, CWE root treatments could induce systemic resistance in the primed state against pathogens on plant leaves that enhanced PR gene expression, defense-related enzyme production, and hydrogen peroxide generation rapidly and effectively immediately after pathogen infection. Thus, the CWEs might suppress anthracnoses on leaves of both pepper and cucumber through primed (priming-mediated) systemic resistance.
Subject
Plant Science,Agronomy and Crop Science
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献