Efficacy of Genetic Resistance and Fungicide Application Against Fusarium Head Blight and Mycotoxins in Wheat Under Persistent Pre- and Postanthesis Moisture

Author:

Moraes Wanderson Bucker1ORCID,Madden Laurence V.1,Paul Pierce A.1ORCID

Affiliation:

1. Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691

Abstract

Field experiments were conducted to investigate the efficacy of fungicide treatments in combination with genetic resistance against Fusarium head blight (FHB) and its associated mycotoxins under persistently wet pre- and postanthesis conditions in plots inoculated with Fusarium graminearum-colonized corn spawn. Treatments consisted of a single application of prothioconazole + tebuconazole at early anthesis (PA), or at 3 (P3), 6 (P6), or 9 (P9) days after early anthesis, or PA followed by a single application of metconazole at 3 (PA+C3), 6 (PA+C6), or 9 (PA+C9) days after early anthesis. PA and P3 were the most efficacious of the single-application treatments in terms of mean percentage control of FHB index (IND), deoxynivalenol (DON), zearalenone (ZEA), and mean increase in grain yield and test weight (TW) relative to the nontreated susceptible check (S_CK). The double-application treatments (PA+C3, PA+C6, and PA+C9) were the most effective of all tested fungicide programs. However, relative to S_CK, the highest overall mean percentage reduction in IND, DON, and ZEA and increase in grain yield and TW were observed when the double-application fungicide programs were integrated with genetic resistance. The estimated net cash income (NCI) of the integrated management (IM) programs was consistently higher than the NCI of other tested programs across different grain prices and fungicide application costs. Thus, the benefits of the two-treatment IM programs under highly favorable conditions for FHB development were enough to offset the cost of two applications, making these programs profitable.

Funder

Ohio Agricultural Research and Development Center

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3