The value of generalized linear mixed models for data analysis in the plant sciences

Author:

Madden Laurence V.,Ojiambo Peter S.

Abstract

Modern data analysis typically involves the fitting of a statistical model to data, which includes estimating the model parameters and their precision (standard errors) and testing hypotheses based on the parameter estimates. Linear mixed models (LMMs) fitted through likelihood methods have been the foundation for data analysis for well over a quarter of a century. These models allow the researcher to simultaneously consider fixed (e.g., treatment) and random (e.g., block and location) effects on the response variables and account for the correlation of observations, when it is assumed that the response variable has a normal distribution. Analysis of variance (ANOVA), which was developed about a century ago, can be considered a special case of the use of an LMM. A wide diversity of experimental and treatment designs, as well as correlations of the response variable, can be handled using these types of models. Many response variables are not normally distributed, of course, such as discrete variables that may or may not be expressed as a percentage (e.g., counts of insects or diseased plants) and continuous variables with asymmetrical distributions (e.g., survival time). As expansions of LMMs, generalized linear mixed models (GLMMs) can be used to analyze the data arising from several non-normal statistical distributions, including the discrete binomial, Poisson, and negative binomial, as well as the continuous gamma and beta. A GLMM allows the data analyst to better match the model to the data rather than to force the data to match a specific model. The increase in computer memory and processing speed, together with the development of user-friendly software and the progress in statistical theory and methodology, has made it practical for non-statisticians to use GLMMs since the late 2000s. The switch from LMMs to GLMMs is deceptive, however, as there are several major issues that must be thought about or judged when using a GLMM, which are mostly resolved for routine analyses with LMMs. These include the consideration of conditional versus marginal distributions and means, overdispersion (for discrete data), the model-fitting method [e.g., maximum likelihood (integral approximation), restricted pseudo-likelihood, and quasi-likelihood], and the choice of link function to relate the mean to the fixed and random effects. The issues are explained conceptually with different model formulations and subsequently with an example involving the percentage of diseased plants in a field study with wheat, as well as with simulated data, starting with a LMM and transitioning to a GLMM. A brief synopsis of the published GLMM-based analyses in the plant agricultural literature is presented to give readers a sense of the range of applications of this approach to data analysis.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3