Pathogenicity and Virulence of Soilborne Oomycetes on Phaseolus vulgaris

Author:

Rossman D. R.1,Rojas A.1,Jacobs J. L.1,Mukankusi C.2,Kelly J. D.1,Chilvers M. I.1

Affiliation:

1. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing

2. International Center for Tropical Agriculture, Kawanda Agricultural Research Institute, Kampala, Uganda

Abstract

Dry bean (Phaseolus vulgaris L.) is a globally important leguminous food crop. Yields can be reduced by high incidence of soilborne oomycetes that cause seedling disease. Breeders have attempted to develop Pythium root rot-resistant bean varieties; however, relationships between dry bean and most soilborne oomycete species remain uncharacterized. Oomycete species (n = 28), including Pythium spp. and Phytopythium spp., were tested in a growth chamber seedling assay at 20°C and an in vitro seed assay at 20°C and 26°C to evaluate their pathogenicity and virulence on ‘Red Hawk’ dark red kidney bean and ‘Zorro’ black bean. Root size or disease severity was significantly impacted by 14 oomycete species, though results varied by bean variety, temperature, and assay. Of these 14 pathogenic oomycete species, 11 species exhibited significant differences in DSI due to temperature on at least one bean variety. Pythium aphanidermatum, P. myriotylum, P. ultimum, P. ultimum var. sporangiiferium, and P. ultimum var. ultimum were the most virulent species in both assays, causing seed rot and pre-emergence damping-off of dry bean. Oomycete species were clustered into three groups based on symptom development: seed rot pathogens, root rot pathogens, or nonpathogens. Intraspecific variability in virulence was observed for eight of the 14 pathogenic oomycete species. Improved understanding of Pythium and Phytopythium interactions with dry bean may enable breeders and pathologists to more effectively evaluate strategies for oomycete seedling disease management.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3