Screening of Reference Genes under Biotic Stress and Hormone Treatment of Mung Bean (Vigna radiata) by Quantitative Real-Time PCR

Author:

Zhou Yanyan1,Liu Huan12,Wu Ting12,Zheng Yu23,Wang Ruimin2,Xue Dong2,Yan Qiang2,Yuan Xingxing12,Chen Xin123

Affiliation:

1. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China

2. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China

3. School of Life Sciences, Jiangsu University, Zhenjiang 212013, China

Abstract

Mung bean (Vigna radiata) production has been greatly threatened by numerous diseases. Infection with these pathogens causes extensive changes in gene expression and the activation of hormone signal transduction. Quantitative real-time PCR (qRT-PCR) is the most common technique used for gene expression validation. Screening proper reference genes for mung bean under pathogen infection and hormone treatment is a prerequisite for ensuring the accuracy of qRT-PCR data in mung bean disease-resistance research. In this study, six candidate reference genes (Cons4, ACT, TUA, TUB, GAPDH, and EF1α) were selected to evaluate the expression stability under four soil-borne disease pathogens (Pythium myriotylum, Pythium aphanidermatum, Fusarium oxysporum, and Rhizoctonia solani) and five hormone treatments (SA, MeJA, ETH, ABA, and GA3). In the samples from different treatments, the Ct value distribution of the six candidate reference genes was different. Under the condition of hormone treatment, the Ct value ranged from a minimum of 17.87 for EF1α to a maximum of 29.63 for GAPDH. Under the condition of pathogen infection, the Ct value ranged from a minimum of 19.43 for EF1α to a maximum of 31.82 for GAPDH. After primer specificity analysis, it was found that GAPDH was not specific, so the five reference genes Cons4, ACT, TUA, TUB, and EF1α were used in subsequent experiments. The software products GeNorm, NormFinder, BestKeeper and RefFinder were used for qRT-PCR data analysis. In general, the best candidates reference genes were: TUA for SA, ABA, GA3, and Pythium myriotylum treatment; TUB for ETH treatment; ACT for MeJA and Fusarium oxysporum treatment; and EF1α for Pythium aphanidermatum and Rhizoctonia solani treatment. The most stably expressed genes in all samples were TUA, while Cons4 was the least stable reference gene. Finally, the reliability of the reference gene was further validated by analysis of the expression profiles of four mung bean genes (Vradi0146s00260, Vradi0158s00480, Vradi07g23860, and Vradi11g03350) selected from transcriptome data. Our results provide more accurate information for the normalization of qRT-PCR data in mung bean response to pathogen interaction.

Funder

National Key R&D Program of China

China Agriculture Research System—Food Legumes

Jiangsu Seed Industry Revitalization Project

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3