Affiliation:
1. USDA, Agricultural Research Service, Crop Genetics Research Unit, Jackson, TN 38301
2. USDA, Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776-0350
3. University of Tennessee, Entomology and Plant Pathology, Jackson, TN 38301
Abstract
Frogeye leaf spot (FLS), caused by Cercospora sojina, is a common disease of soybean in the southern and northern United States and causes significant yield loss. The use of the current race scheme for classification for C. sojina does not take into account the range of disease severity reactions within each differential. The objective of this research was to better understand the diversity among C. sojina isolates through the development and use of pathogenicity groups. In this study, 83 isolates acquired from 2006 to 2009 were screened using 12 soybean (Glycine max) differentials. Disease severity on the 12 differentials ranged from 0 to 9, where 0 is immune and 9 is very susceptible. The average severity for each isolate across differentials ranged from 1 to 7. The 83 isolates were grouped into five pathogenicity groups (PG): PG1, PG2, PG3, PG4, and PG5, reflecting the severity grouping. Using the 12 differentials, PG1 isolates were differentiated by the lack of infection on Davis, Peking, Kent, Palmetto, Hood, CNS, Tracy, and Richland. PG2 had a range of infections on a scale of 1 to 2 on all differentials except on Davis; PG3 isolates had severity ranging from 3 to 4 except on Davis. PG4 isolates caused no infection on Davis, a maximum disease severity of 5 on Peking, while the rest of differentials had severities from 5 to 6. PG5 isolates caused no infection on Davis, severity of 7 on CNS, and severity of 8 on Kent, Hood, and Palmetto. The remaining seven differentials had severities of 9. Across the geographical locations, the predominant pathotypes were PG3 and PG4 and represented 84% of the tested isolates. Azoxystrobin fungicide sensitivity tests showed that 88% of the isolates were sensitive and dominated the population, while only 6% had a high level of fungicide resistance, suggesting that FLS resistance to the QoI fungicide group was not yet completely developed and had not spread to other areas at the time when these isolates were acquired. The overall virulence profile of the isolates indicated that there was variation in disease severity, suggesting that selection of resistance for each PG may produce lines with more precisely defined interactions to specific pathotypes of C. sojina. This may improve the screening and selection of useful resistance genes that could be pyramided for resistance to each pathogenicity group.
Funder
United States Department of Agriculture, Agricultural Research Service
Subject
Plant Science,Agronomy and Crop Science