Transcriptome-Derived Amplicon Sequencing Markers Elucidate the U.S. Podosphaera macularis Population Structure Across Feral and Commercial Plantings of Humulus lupulus

Author:

Weldon William A.1ORCID,Knaus Brian J.2,Grünwald Niklaus J.3ORCID,Havill Joshua S.4ORCID,Block Mary H.2,Gent David H.5ORCID,Cadle-Davidson Lance E.16ORCID,Gadoury David M.1

Affiliation:

1. Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456

2. Department of Botany and Plant Pathology, Corvallis, OR 97331

3. U.S. Department of Agriculture-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR 97330

4. Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108

5. U.S. Department of Agriculture-Agricultural Research Service Forage Seed and Cereal Research Unit, Corvallis, OR 97331

6. U.S. Department of Agriculture-Agricultural Research Service Grape Genetics Research Unit, Geneva, NY 14456

Abstract

Obligately biotrophic plant pathogens pose challenges in population genetic studies due to their genomic complexities and elaborate culturing requirements with limited biomass. Hop powdery mildew (Podosphaera macularis) is an obligately biotrophic ascomycete that threatens sustainable hop production. P. macularis populations of the Pacific Northwest (PNW) United States differ from those of the Midwest and Northeastern United States, lacking one of two mating types needed for sexual recombination and harboring two strains that are differentially aggressive on the cultivar Cascade and able to overcome the Humulus lupulus R-gene R6 (V6), respectively. To develop a high-throughput marker platform for tracking the flow of genotypes across the United States and internationally, we used an existing transcriptome of diverse P. macularis isolates to design a multiplex of 54 amplicon sequencing markers, validated across a panel of 391 U.S. samples and 123 international samples. The results suggest that P. macularis from U.S. commercial hop yards form one population closely related to P. macularis of the United Kingdom, while P. macularis from U.S. feral hop locations grouped with P. macularis of Eastern Europe. Included in this multiplex was a marker that successfully tracked V6-virulence in 65 of 66 samples with a confirmed V6-phenotype. A new qPCR assay for high-throughput genotyping of P. macularis mating type generated the highest resolution distribution map of P. macularis mating type to date. Together, these genotyping strategies enable the high-throughput and inexpensive tracking of pathogen spread among geographical regions from single-colony samples and provide a roadmap to develop markers for other obligate biotrophs.

Funder

National Institute of Food and Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3