Detection of Podosphaera macularis in Air Samples by Quantitative PCR

Author:

Gent David H.12ORCID,Adair Nanci L.2,Hatlen Ross J.3,Miles Timothy D.3ORCID,Richardson Briana J.1ORCID,Rivedal Hannah M.2ORCID,Ross Cameron1,Wiseman Michele S.1

Affiliation:

1. Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331

2. U.S. Department of Agriculture, Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331

3. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824

Abstract

Detection and quantification of pathogen propagules in the air or other environmental samples is facilitated by culture-independent assays. We developed a quantitative PCR assay for the hop powdery mildew fungus, Podosphaera macularis, for detection of the organism from air samples. The assay uses primers and a TaqMan probe designed to target species-specific sequences in the 28S large subunit of the nuclear ribosomal DNA. Analytical sensitivity was not affected by the presence of an exogenous internal control or potential PCR inhibitors associated with DNA extracted from soil. The level of quantification of the assay was between 200 and 350 conidia when DNA was extracted from a fixed number of conidia. The assay amplified all isolates of P. macularis tested and had minimal cross-reactivity with other Podosphaera species when assayed with biologically relevant quantities of DNA. Standard curves generated independently in two other laboratories indicated that assay sensitivity was qualitatively similar and reproducible. All laboratories successfully detected eight unknown isolates of P. macularis and correctly discriminated Pseudoperonospora humuli and a water control. The usefulness of the assay for air sampling for late-season inoculum of P. macularis was demonstrated in field studies in 2019 and 2020. In both years, airborne populations of P. macularis in hop yards were detected consistently and increased during bloom and cone development.

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3