An Iron Uptake Operon Required for Proper Nodule Development in the Bradyrhizobium japonicum-Soybean Symbiosis

Author:

Benson Heather P.,Boncompagni Eric,Guerinot Mary Lou

Abstract

Rhizobia live in the soil or enter into a nitrogen-fixing symbiosis with a suitable host plant. Each environment presents different challenges with respect to iron acquisition. The soybean symbiont Bradyrhizobium japonicum 61A152 can utilize a variety of siderophores (Fe[III]-specific ligands). Purification of iron-regulated outer membrane proteins had previously allowed the cloning of a gene, fegA, from B. ja-ponicum 61A152, whose predicted protein shares significant amino acid similarity with known TonB-dependent siderophore receptors. Here, we show that fegA is in an operon with a gene, fegB, that is predicted to encode an inner membrane protein. Characterization of fegAB and fegB mutants shows that both fegA and fegB are required for utilization of the siderophore ferrichrome. Whereas the fegB mutant forms a normal symbiosis, the fegAB mutant has a dramatic phenotype in planta. Six weeks after inoculation with a fegAB strain, soybean nodules do not contain leghemoglobin and do not fix nitrogen. Infected cells contain few symbiosomes and are filled with vesicles. As ferrichrome is a fungal siderophore not likely to be available in nodules, the symbiotic defect suggests that the fegAB operon is serving a different function in planta, possibly one involved in signaling between the two partners.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3