Author:
Ezawa Tatsuhiro,Hayatsu Masahito,Saito Masanori
Abstract
The mycorrhiza-responsive phosphatase of Tagetes patula in symbiosis with Glomus etunicatum was detected by electrophoresis, was purified by column chromatography, and was characterized as acid phosphatase that was secreted into rhizosphere. The N-terminal amino acid sequence was determined by a gas-phase sequencer, and a cDNA fragment of the phosphatase gene (TpPAP1) was amplified by degenerate primers designed based on the N-terminal amino acid sequence. The full-length cDNA was obtained by the rapid amplification of cDNA ends technique. The TpPAP1 was of host origin, and the cDNA was 1,843 bp long with a predicted open reading frame of polypeptide of 466 amino acids. Phylogenetic analysis revealed that the gene fell into the cluster of plant high-molecular-weight purple acid phosphatase. Expression analysis of the TpPAP1 in T. patula in symbiosis with Archaeospora leptoticha showed that the levels of transcripts increased eightfold by mycorrhizal colonization. Western blot analysis revealed that the 57-kDa protein corresponding to the mycorrhiza-responsive phosphatase increased by mycorrhizal colonization. The present study proposes a new strategy for acquisition of P in arbuscular mycorrhizal associations in which the fungal partner activates a part of the low-P adaptation system of the plant partner, phosphatase secretion, and improves the overall efficiency of P uptake.
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献