Role of soil abiotic processes on phosphorus availability and plant responses with a focus on strigolactones in tomato plants

Author:

Santoro VeronicaORCID,Schiavon Michela,Celi Luisella

Abstract

Abstract Background Phosphorus (P) is an essential nutrient for plant growth, taking part in primary cellular metabolic processes as a structural component of key biomolecules. Soil processes as adsorption, precipitation, and coprecipitation can affect P bioavailability, leading to limited plant growth and excessive use of P fertilizers, with adverse impacts on the environment and progressive depletion of P reserves. To cope with P stress, plants undergo several growth, development, and metabolic adjustments, aimed at increasing P-acquisition and -utilization efficiency. Recently, strigolactones (SLs) have emerged as newly defined hormones that mediate multiple levels of morphological, physiological and biochemical changes in plants as part of the P acclimation strategies to optimize growth. Therefore, understanding the soil processes affecting P availability and P acquisition strategies by plants can contribute to improved agronomical practices, resources optimization and environmental protection, and the development of plants with high P use efficiency for enhanced agricultural productivity. Scope In this review, we discuss the range of abiotic processes that control P retention in soil and how different concentrations or degrees of P bioavailability can trigger various responses in plants, while critically highlighting the inconsistent conditions under which experiments evaluating aspects of P nutrition in plants have been conducted. We also present recent advances in elucidating the role of SLs in the complex P signalling pathway, with a special focus on what has been discovered so far in the model plant tomato (Solanum lycopersicum L.).

Funder

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3