Putative Effector Genes Distinguish Two Pathogenicity Groups of Fusarium oxysporum f. sp. spinaciae

Author:

Batson Alexander M.1ORCID,Fokkens Like2,Rep Martijn2,du Toit Lindsey J.1

Affiliation:

1. Washington State University Northwestern Washington Research and Extension Center Mount Vernon, Mount Vernon, WA 98273, U.S.A.

2. Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands

Abstract

Fusarium wilt of spinach, caused by Fusarium oxysporum f. sp. spinaciae, is an important disease during warm conditions in production regions with acid soils, yet little is known about what confers pathogenicity to spinach in F. oxysporum f. sp. spinaciae genetically. To identify candidate fungal genes that contribute to spinach Fusarium wilt, each of 69 geographically diverse F. oxysporum isolates was tested for pathogenicity on each of three spinach inbreds. Thirty-nine isolates identified as F. oxysporum f. sp. spinaciae caused quantitative differences in disease severity among the inbreds that revealed two distinct pathogenicity groups of F. oxysporum f. sp. spinaciae. Putative effector gene profiles, predicted from whole-genome sequences generated for nine F. oxysporum f. sp. spinaciae isolates and five nonpathogenic, spinach-associated F. oxysporum (NPS) isolates, distinguished the F. oxysporum f. sp. spinaciae isolates from the NPS isolates, and separated the F. oxysporum f. sp. spinaciae isolates into two groups. Five of the putative effector genes appeared to be unique to F. oxysporum f. sp. spinaciae, as they were not found in 222 other publicly available genome assemblies of F. oxysporum, implicating potential involvement of these genes in pathogenicity to spinach. In addition, two combinations of the 14 known Secreted in Xylem (SIX) genes that have been affiliated with host pathogenicity in other formae speciales of F. oxysporum were identified in genome assemblies of the nine F. oxysporum f. sp. spinaciae isolates, either SIX8 and SIX9 or SIX4, SIX8, and SIX14. Characterization of these putative effector genes should aid in understanding mechanisms of pathogenicity in F. oxysporum f. sp. spinaciae, developing molecular tools for rapid detection and quantification of F. oxysporum f. sp. spinaciae, and breeding for resistance to Fusarium wilt in spinach. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3