Author:
Kørner Camilla Julie,Klauser Dominik,Niehl Annette,Domínguez-Ferreras Ana,Chinchilla Delphine,Boller Thomas,Heinlein Manfred,Hann Dagmar R.
Abstract
The plant's innate immune system detects potential biotic threats through recognition of microbe-associated molecular patterns (MAMPs) or danger-associated molecular patterns (DAMPs) by pattern recognition receptors (PRR). A central regulator of pattern-triggered immunity (PTI) is the BRI1-associated kinase 1 (BAK1), which undergoes complex formation with PRR upon ligand binding. Although viral patterns inducing PTI are well known from animal systems, nothing similar has been reported for plants. Rather, antiviral defense in plants is thought to be mediated by post-transcriptional gene silencing of viral RNA or through effector-triggered immunity, i.e., recognition of virus-specific effectors by resistance proteins. Nevertheless, infection by compatible viruses can also lead to the induction of defense gene expression, indicating that plants may also recognize viruses through PTI. Here, we show that PTI, or at least the presence of the regulator BAK1, is important for antiviral defense of Arabidopsis plants. Arabidopsis bak1 mutants show increased susceptibility to three different RNA viruses during compatible interactions. Furthermore, crude viral extracts but not purified virions induce several PTI marker responses in a BAK1-dependent manner. Overall, we conclude that BAK1-dependent PTI contributes to antiviral resistance in plants.
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
143 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献