Deciphering the Role of Virus Receptors in Plant–Virus–Vector Interactions

Author:

Jangra Sumit1ORCID,Chinnaiah Senthilraja2,Patil Sneha Rashtrapal3ORCID,Shukla Bhavya4,Devendran Ragunathan5ORCID,Kumar Manish6ORCID

Affiliation:

1. Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA

2. Texas A&M Agri Life Research, Amarillo, TX 79106, USA

3. School of Agricultural Science, Karunya Institute of Technology and Sciences, Coimbatore 641114, India

4. National Institute of Plant Genome Research, New Delhi 110067, India

5. Charles Tanford Protein Center, Martin-Luther University, 06120 Halle, Germany

6. Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA

Abstract

Insect-transmitted plant viruses are a major threat to global agricultural crop production. Receptors play a prominent role in the interplay between host-pathogen and vector interaction. The virus–vector relationship involves both viral and vector receptors. Receptors-like kinases (RLKs) and receptor-like proteins play a crucial role in plant immunity, which acts as a basal defense. Pathogens can evade or block host recognition by their effector proteins to inhibit pathogen recognition receptor (PRR)-mediated signaling. Intriguingly, RLKs are also known to interact with viral proteins and impact plant susceptibility against viruses, while the endocytic receptors in vectors assist in the binding of the virus to the vectors. Unlike other receptors of fungi and bacteria which have three different domains located from extracellular or intracellular to perceive a multitude of molecular patterns, the characterization of viral receptors is quite complex and limited since the virus is directly injected into plant cells by insect vectors. Little is known about these receptors. Unraveling the receptors involved in virus entry and transmission within the vector will provide vital information in virus–vector interactions. This review focuses on efforts undertaken in the identification and characterization of receptors of plant viruses within the host and vector. This will lead to a better understanding of the cellular mechanism of virus transmission and spread, and further suggests new alternative tools for researchers to develop an integrated approach for the management of viral diseases and associated vectors.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3