Optimizing Efficacy of New Postharvest Fungicides and Evaluation of Sanitizing Agents for Managing Citrus Green Mold

Author:

Kanetis Loukas1,Förster Helga2,Adaskaveg James E.3

Affiliation:

1. Department of Plant Pathology, University of California, Riverside 92521

2. Department of Plant Pathology, University of California, Davis 95616

3. Department of Plant Pathology, University of California, Riverside

Abstract

Three new fungicides, azoxystrobin, fludioxonil, and pyrimethanil, that belong to different chemical classes are highly effective in managing citrus green mold and are being registered for postharvest use in the United States. Recirculating in-line drenches provided a significantly improved efficacy compared with standard low-volume spray applications. To prevent pathogen contamination of drench solutions, two oxidizing disinfectants, sodium hypochlorite and hydrogen peroxide/peroxyacetic acid (HPPA) solutions, were evaluated. Inhibition of conidial germination of Penicillium digitatum was dependent on the pH of the solution and the exposure time for each sanitizing agent. Chlorine (50 mg/liter) and HPPA (2,700 mg/liter) effectively inhibited germination in 40- and 240-s exposures, respectively, at pH 7. All fungicides tested were compatible and effective with HPPA, whereas fludioxonil, azoxystrobin, and thiabendazole, but not imazalil and pyrimethanil, were compatible with chlorine. In laboratory studies, sodium bicarbonate (SBC, 3%) significantly increased the efficacy of the three fungicides (250 mg/liter) and had no adverse effect on their stability in aqueous solutions. Fludioxonil (300 mg/liter)-SBC mixtures were still highly effective when applied 24 h after fruit inoculation. In experimental packingline studies, SBC or SBC-chlorine improved the efficacy of fludioxonil, whereas azoxystrobin was effective with and without these additives. Heating of drench solutions of fludioxonil (300 mg/liter) to 50°C did not improve decay control. In conclusion, in-line recirculating drench applications and fungicide-sanitizer-SBC mixtures significantly increased fungicide efficacy and provide an integrated approach for optimizing fungicide efficacy. These strategies also should minimize the selection for resistant isolates of the pathogen.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3