Virulence Survey of Puccinia striiformis in Israel Revealed Considerable Changes in the Pathogen Population During the Period 2001 to 2019

Author:

Kosman Evsey1ORCID,Ben-Yehuda Pnina1,Manisterski Jacob1,Anikster Yehoshua1,Sela Hanan12ORCID

Affiliation:

1. Institute for Cereal Crops Research, School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

2. Institute of Evolution, University of Haifa, Haifa 3498838, Israel

Abstract

A total of 353 urediniospore isolates of Puccinia striiformis f. sp. tritici (Pst) collected in Israel during 2001 to 2019 were analyzed. Pst pathogenicity was studied with a set of 20 differentials (17 Avocet and 3 other lines). Three periods were compared: 2001 to 2007, 2009 to 2016, and 2017 to 2019. No virulence to Yr5 or Yr15 was detected. Virulence frequencies on Yr4, Yr10, Yr24, and YrSp genes rose to the moderate level (0.28 to 0.44) in 2017 to 2019. Virulence frequencies to Yr2 and Yr9 decreased. One Pst phenotype was identified in all three periods, but its frequency drastically decreased from 0.74 in 2001 to 2016 to 0.21 in 2017 to 2019. The most probable scenario of emergence of wheat yellow rust in Israel is wind dissemination of Pst urediniospores from the Horn of Africa. Variability of the Pst population increased amid considerable evolution with two major transformations in 2009 and 2017. The first modification can be attributed to changes in wheat genetic background in Israel due to deployment of new cultivars resistant to yellow rust since 2004. The second shift in 2017 can be primarily explained by intensive deployment of wheat cultivars resistant to the stem rust race Ug99 in the 2010s in the Horn of Africa. This led to changing genetic backgrounds of the cultivated wheats in the donor region and development and long-distance spread of new Pst phenotypes to Israel. Two singular multivirulent Pst phenotypes were identified in 2019, one of them being closely related to the aggressive Warrior race. Such phenotypes may potentially defeat existing resistances.

Funder

Israeli Ministry of Agriculture and Association of Field Crop Farmers

Lieberman Okinow Foundation and Hazera Seeds Ltd.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3