Abstract
AbstractThis paper is dedicated to the memory of the APS Fellow Prof. Yehoshua Anikster (1934 -2023). A total of 336 urediniospore isolates of Puccinia graminis f. sp. tritici (Pgt) were derived from samples collected in Israel from 2009 to 2019 and analyzed for virulence with the standard set of 20 differentials. Seventy-four virulence phenotypes were identified during the survey. Two Pgt phenotypes (TKTTF, TTTTF) were found in nine annual populations while 57 appeared in only one year, in most of the cases (51) only once. The yearly pathogen collections of 2009 – 2014 differed from the collections of 2015-2018, and the 2019 collection diverged from all others. No virulence to Sr24 and Sr31 indicators of UG99 was detected. When comparing the 2009 – 2014 and 2015 – 2018 periods, virulence frequencies declined for Sr17, 30, and 38 genes from 0.85—0.98 to 0.31 – 0.59, while the frequency for Sr36 rose (0.42 vs. 0.87). The average relative virulence complexity of Pgt phenotypes decreased from 0.83 (2009—2014) and 0.79 (2015 – 2018) to 0.67 in 2019. Variability within the annual populations gradually increased over time. The Pgt collections of isolates in 2009 – 2014 and 2015 – 2018 were significantly different (p = 0.01). The effective number of different annual populations in 2009 – 2018 was 2.04 (β-variation = 0.12). Since Pgt does not over-summer in Israel, the northern source of inoculum from Turkey and Russia seems the most probable.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Akci, N., & Karakaya, A. (2021). Puccinia graminis f. sp. tritici races identifed on wheat and Berberis spp. in northern Turkey. Indian Phytopathology, 74, 1105–1109. https://doi.org/10.1007/s42360-021-00343-1
2. Brown, J. K. M., & Hovmøller, M. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.
3. Czajowski, G., Kosman, E., Słowacki, P., Park, R. F., & Czembor, P. (2021). Assessing new SSR markers for utility and informativeness in genetic studies of brown rust fungi on wheat, triticale and rye. Plant Pathology, 70, 1110–1122.
4. El-Naggar, D. R., El-Orabey, W. M., Gad, M. A., & Hermas, G. A. (2020). Characterization of virulence and diversity of Puccinia graminis f. sp. tritici on wheat in Egypt. Egyptian Journal of Agronomy, 42, 19–34.
5. FAOSTAT (2020) Food and Agricultural Organization of the United Nations. http://www.fao.org/faostat/en/#data. Accessed 7 Feb 2024