Ty-2 and Ty-3a Conferred Resistance are Insufficient Against Tomato Yellow Leaf Curl Kanchanaburi Virus from Southeast Asia in Single or Mixed Infections of Tomato

Author:

Koeda Sota1ORCID,Fujiwara Ikuya2,Oka Yuki1,Kesumawati Elly3,Zakaria Sabaruddin3,Kanzaki Shinya1

Affiliation:

1. Faculty of Agriculture, Kindai University, 3327-204 Nara, Japan

2. Graduate School of Agriculture, Kindai University, 3327-204 Nara, Japan

3. Faculty of Agriculture, Syiah Kuala University, 23111 Banda Aceh, Aceh, Indonesia

Abstract

Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus that originated in the eastern Mediterranean, has spread worldwide, becoming a serious threat to tomato (Solanum lycopersicum L.) production. Southeast Asia is considered one of the hotspots for begomovirus diversity, and a wide variety of local begomovirus species distinct from TYLCV have been identified. In this study, the protection effect of introgressions of single TYLCV Ty resistance genes, Ty-2 and Ty-3a, in tomato was examined against inoculations of the bipartite begomoviruses Tomato yellow leaf curl Kanchanaburi virus (TYLCKaV) and Pepper yellow leaf curl Indonesia virus (PepYLCIV) isolated from Indonesia. Our findings suggest that Ty-2 in the heterozygous state was found to be ineffective against PepYLCIV and TYLCKaV, whereas Ty-3a in the heterozygous state was effective against PepYLCIV and partially effective against TYLCKaV. Quantification of viral DNAs showed correlation between symptom expression and viral DNA accumulation. Moreover, mixed infections of TYLCKaV and PepYLCIV caused notably severe symptoms in tomato plants harboring Ty-3a. In cases of mixed infection, quantifying viral DNAs showed a relatively high accumulation of PepYLCIV, indicating that Ty-3a loses its effectiveness against PepYLCIV when TYLCKaV is also present. This study demonstrates the lack of effectiveness of Ty resistance genes against single and mixed infections of distinct local begomoviruses from Southeast Asia.

Funder

Japan Society for the Promotion of Science

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3