Breakdown of Ty-1-based resistance to tomato yellow leaf curl virus in tomato plants at high temperatures

Author:

Koeda Sota1,Kitawaki Arata2

Affiliation:

1. Kindai University, 12872, 3327-204 Nakamachi, Nara, Nara, Japan, 631-8505, ;

2. Kindai University, Nara, Japan;

Abstract

The global dissemination of the Israel (IL) and mild (Mld) strains of tomato yellow leaf curl virus (TYLCV) (Family Geminiviridae, genus Begomovirus) is a major threat to tomato production in many regions worldwide. The use of resistant hybrid cultivars bearing the dominant resistance genes Ty-1, Ty-3, and Ty-3a has become a common practice for controlling tomato yellow leaf curl disease (TYLCD) caused by TYLCV. However, TYLCD symptoms have been sporadically observed in resistant cultivars grown in seasons when temperatures are high. In this study, we used TYLCV-resistant cultivars with confirmed presence of Ty-1, which were determined using newly developed allele-specific markers based on polymorphisms within the locus. These Ty-1-bearing resistant tomato plants and susceptible plants were infected with TYLCV and grown at moderate or high temperatures. Under high-temperature conditions, the Ty-1-bearing tomato cultivar Momotaro Hope (MH) infected with TYLCV-IL had severe TYLCD symptoms, which were almost equivalent to those of the susceptible cultivar. However, MH plants infected with TYLCV-Mld were symptomless or had slight symptoms under the same temperature condition. The quantitative analysis of the TYLCV-IL viral DNA content revealed a correlation between symptom development and viral DNA accumulation. Furthermore, under high-temperature conditions, TYLCV-IL caused severe symptoms in multiple commercial tomato cultivars with different genetic backgrounds. Our study provided the scientific evidence for the experientially known phenomenon by tomato growers, and it is anticipated that the global warming, associated with climate change, could potentially disrupt the management of TYLCV in tomato plants mediated by the Ty-1 gene.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3