First Report of Freesia sneak virus Infecting Lachenalia Cultivars in South Africa

Author:

Vaira A. M.1,Kleynhans R.2,Hammond J.3

Affiliation:

1. CNR, Istituto di Virologia Vegetale, 10135 Torino, Italy and USDA-ARS, Floral and Nursery Plants Research Unit, Beltsville, MD 20705

2. ARC-Roodeplaat Pretoria 0001, South Africa

3. USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705

Abstract

Lachenalia (Lachenalia species, family Hyacinthaceae) is a bulbous ornamental plant endemic to southern Africa. In 1998, several lachenalia lines from ARC-Roodeplaat showing virus-like symptoms, and presumed to be infected with Ornithogalum mosaic virus (OrMV), were sent from South Africa under an APHIS permit for examination in Beltsville, MD. In addition to potyvirus-like particles, fine filamentous particles consistent with those of ophioviruses were observed with electron microscopy in some of the plant samples. Ophiovirus virions are filamentous nucleocapsids approximately 3 nm in diameter forming circularized structures of different lengths and are not easily detectable with electron microscopy. A reverse transcription (RT)-PCR assay using genus-specific degenerate primers that yield a 136-bp fragment from the RdRp gene is currently the best tool for detecting ophioviruses (3). Complementary DNA was produced from lachenalia total RNA extracts using either random hexamers or ophiovirus-specific primer OP1 (3). The ophiovirus diagnostic 136-bp fragment was amplified by PCR from plants of five lines (B12, L. unicolor × L. namaquensis, released in South Africa as cv. Rodelein; B24, L. aloides × L. rubida, cv. Robekkie; B48, a complex hybrid of L. aloides, L. rubida, L. orchioides, and L. bulbifera, cv. Leipoldt; B51, a complex hybrid of L. aloides, L. bulbifera, and L. orchioides, cv. Winsome; and B52, an intraspecies cross of L. aloides, cv. Fransie) of the six lines examined. Electron microscopy revealed ophiovirus particles in three of these five lines. The PCR products from three lachenalia lines were sequenced and found to be identical; the deduced 45 amino acid sequence showed 100% identity with the corresponding sequence obtained from Freesia sneak virus (FreSV), a tentative ophiovirus species referred to in the 8th ICTV report as Freesia ophiovirus (4) (for which the name Freesia sneak virus is now proposed). Currently, available sequence information shows only approximately 50 to 70% similarity between ophiovirus species and almost 100% identity between isolates, suggesting that the lachenalia ophiovirus is an isolate of FreSV. Symptoms associated with ophiovirus-infected lachenalias include fine chlorotic streaking and occasional gray flecking; more prominent chlorotic streaking, necrosis, and/or leaf deformation were observed in plants also infected with OrMV, similar potyviruses, and possibly other viruses. No ophiovirus was detected in five lines of Lachenalia hybrids obtained from U.S. commercial sources showing potyvirus-associated foliar chlorotic streaking, including cv. Fransie. Potyviruses were detected by RT-PCR (1) or ELISA with potyvirus-specific monoclonal antibodies (2) in plants from the United States and South Africa. It is of interest that the known hosts of FreSV, freesia and lachenalia, are both ornamental monocot genera of South African origin. References: (1) J. Chen et al. Arch. Virol. 146:757, 2001. (2) R. L. Jordan and J. Hammond. J. Gen. Virol. 72:25, 1991. (3) A. M. Vaira et al. Arch. Virol. 148:1037, 2003. (4) A. M. Vaira et al. Pages 673–679 in: Virus Taxonomy: 8th Report of the ICTV, 2005.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3