Discovery and Fine Mapping of qSCR6.01, a Novel Major QTL Conferring Southern Rust Resistance in Maize

Author:

Lu Lu1ORCID,Xu Zhennan1,Sun Suli1ORCID,Du Qing2ORCID,Zhu Zhendong1ORCID,Weng Jianfeng1ORCID,Duan Canxing1ORCID

Affiliation:

1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China

2. Institute of Maize Research, Guangxi Academy of Agricultural Sciences, Nanning 530007, China

Abstract

Southern corn rust (SCR), an airborne disease caused by Puccinia polysora, can severely reduce the yield of maize (Zea mays L.). Using recombinant inbred lines (RILs) derived from a cross between susceptible inbred line Ye478 and resistant Qi319 in combination with their high-density genetic map, we located five quantitative trait loci (QTLs) against SCR, designated as qSCR3.04, qSCR5.07, qSCR6.01, qSCR9.03, and qSCR10.01, on chromosomes 3, 5, 6, 9, and 10, respectively. Each QTL could explain 2.84 to 24.15% of the total phenotypic variation. qSCR6.01, detected on chromosome 6, with the highest effect value, accounting for 17.99, 23.47, and 24.15% of total phenotypic variation in two environments and best linear unbiased prediction, was a stably major resistance QTL. The common confidence interval for qSCR6.01 was 2.95 Mb based on the B73 RefGen_v3 sequence. The chromosome segment substitution lines (CSSLs) constructed with Qi319 as the donor parent and Ye478 as the recurrent parent were used to further verify qSCR6.01 resistance to SCR. The line CL183 harboring introgressed qSCR6.01 showed obvious resistance to SCR that was distinctly different from that of Ye478 (P = 0.0038). Further mapping of qSCR6.01 revealed that the resistance QTL was linked to insertion-deletion markers Y6q77 and Y6q79, with physical locations of 77.6 and 79.6 Mb, respectively, on chromosome 6. Different from previous major genes or QTLs against SCR on chromosome 10, qSCR6.01 was a newly identified major QTL resistance to SCR on chromosome 6 for the first time. Using RIL and CSSL populations in combination, the SCR-resistance QTL research can be dissected effectively, which provided important gene resource and genetic information for breeding resistant varieties.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3