Degradation of Aflatoxins B1 by Atoxigenic Aspergillus flavus Biocontrol Agents

Author:

Maxwell Lourena A.12ORCID,Callicott Kenneth A.3ORCID,Bandyopadhyay Ranajit4ORCID,Mehl Hillary L.3ORCID,Orbach Marc J.1,Cotty Peter J.5

Affiliation:

1. School of Plant Sciences, University of Arizona, Tucson, AZ 85721, U.S.A.

2. Eduado Mondlane University, P. O. Box 257, Maputo, Mozambique

3. United States Department of Agriculture–Agricultural Research Service, Arid-Land Agricultural Research Center, Tucson, AZ 85701, U.S.A.

4. International Institute of Tropical Agriculture, Ibadan, Nigeria

5. School of Food Science and Engineering, Ocean University of China, Qingdao, China

Abstract

Aflatoxins are potent Aspergillus mycotoxins that contaminate food and feed, thereby impacting health and trade. Biopesticides with atoxigenic Aspergillus flavus isolates as active ingredients are used to reduce aflatoxin contamination in crops. The mechanism of aflatoxin biocontrol is primarily attributed to competitive exclusion but, sometimes, aflatoxin is reduced by greater amounts than can be explained by displacement of aflatoxin-producing fungi on the crop. Objectives of this study were to (i) evaluate the ability of atoxigenic A. flavus genotypes to degrade aflatoxin B1 (AFB1) and (ii) characterize impacts of temperature, time, and nutrient availability on AFB1 degradation by atoxigenic A. flavus. Aflatoxin-contaminated maize was inoculated with atoxigenic isolates in three separate experiments that included different atoxigenic genotypes, temperature, and time as variables. Atoxigenic genotypes varied in aflatoxin degradation but all degraded AFB1 >44% after 7 days at 30°C. The optimum temperature for AFB1 degradation was 25 to 30°C, which is similar to the optimum range for AFB1 production. In a time-course experiment, atoxigenics degraded 40% of AFB1 within 3 days, and 80% of aflatoxin was degraded by day 21. Atoxigenic isolates were able to degrade and utilize AFB1 as a sole carbon source in a chemically defined medium but quantities of AFB1 degraded declined as glucose concentrations increased. Degradation may be an additional mechanism through which atoxigenic A. flavus biocontrol products reduce aflatoxin contamination pre- or postharvest. Thus, selection of optimal atoxigenic active ingredients can include assessment of both competitive ability in agricultural fields and their ability to degrade aflatoxins.

Funder

United States Department of Agriculture (USDA) Foreign Agricultural Service

USDA-Agricultural Research Service

Bill & Melinda Gates Foundation

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3