Affiliation:
1. Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
2. Henan Engineering Research Center of Biological Fertilizer Developmental and Collaborative Application, Henan Institute of Science and Technology, Xinxiang 453003, China
3. College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
Abstract
Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB) of wheat. The phenylpyrrole fungicide fludioxonil is not currently registered for the management of FHB in China. The current study assessed the fludioxonil sensitivity of a total of 53 F. graminearum isolates collected from the six most important wheat-growing provinces of China during 2018 and 2019. The baseline fludioxonil sensitivity distribution indicated that all of the isolates were sensitive, exhibiting a unimodal cure with a mean effective concentration for 50% inhibition value of 0.13 ± 0.12 μg/ml (standard deviation). Five fludioxonil-resistant mutants were subsequently induced by exposure to fludioxonil under laboratory conditions. Ten successive rounds of subculture in the absence of the selection pressure indicated that the mutation was stably inherited. However, the fludioxonil-resistant mutants were found to have reduced pathogenicity, higher glycerol accumulation, and higher osmotic sensitivity than the parental wild-type isolates, indicating that there was a fitness cost associated with fludioxonil resistance. In addition, the study also found a positive cross resistance between fludioxonil, procymidone, and iprodione, but not with other fungicides such as boscalid, carbendazim, tebuconazole, and fluazinam. Sequence analysis of four candidate target genes (FgOs1, FgOs2, FgOs4, and FgOs5) revealed that the HBXT2R mutant contained two point mutations that resulted in amino acid changes at K223T and K415R in its FgOs1 protein, and one point mutation at residue 520 of its FgOs5 protein that resulted in a premature stop codon. Similarly, the three other mutants contained point mutations that resulted in changes at the K192R, K293R, and K411R residues of the FgOs5 protein but none in the FgOs2 and FgOs4 genes. However, it is important to point out that the FgOs2 and FgOs4 expression of all the fludioxonil-resistant mutants was significantly (P < 0.05) downregulated compared with the sensitive isolates (except for the SQ1-2 isolate). It was also found that one of the resistant mutants did not have changes in any of the sequenced target genes, indicating that an alternative mechanism could also lead to fludioxonil resistance.
Funder
Key Scientific and Technological Research Project of Henan Province
National Natural Science Foundation of China
Subject
Plant Science,Agronomy and Crop Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献