Baseline tebuconazole sensitivity and potential resistant mechanisms in Fusarium graminearum

Author:

Zhou Feng1,Zhou Xiaoli1,jiao Yan1,Han Aohui1,Zhou Huanhuan1,Chen Zeyuan1,Li Wei Guo1,Liu Runqiang1

Affiliation:

1. Henan Institute of Science and Technology

Abstract

Abstract

Background The Fusarium head blight caused by Fusarium graminearum results in reduced crop yields and the potential for vomitoxin contamination, which poses a risk to both human and livestock health. The primary method of control relies on the application of chemical fungicides. Results The current study found that the tebuconazole sensitivity of 165 F. graminearum isolates collected from the Huang-Huai-Hai region of China between 2019 and 2023 ranged from 0.005 to 2.029 µg/mL, with an average EC50 value of 0.33 ± 0.03 µg/mL. The frequency distribution conformed to a unimodal curve around the mean, and therefore provides a useful reference for monitoring the emergence of tebuconazole resistance in field populations of F. graminearum. Analysis of five tebuconazole-resistant mutants produced under laboratory conditions indicated that although the mycelial growth of the mutants were significantly (p < 0.05) reduced, spore production and germination rates could be significantly (p < 0.05) increased. However, pathogenicity tests confirmed a severe fitness cost associated with tebuconazole resistance, as all of the mutants completely loss the ability to infect host tissue. Furthermore, in general the resistant mutants were found to have increased sensitivity to abiotic stress, such as ionic and osmotic stress, though not to Congo red and oxidative stress, to which they were more tolerant. No cross-resistance was detected between tebuconazole and other unrelated fungicides such as flutriafol, propiconazole and fluazinam, but there was a clear negative cross-resistance with triazole fungicides including fludioxonil, epoxiconazole, metconazole, and hexaconazole. Meanwhile, molecular analysis identified several point mutations in the CYP51 genes of the mutants, which resulted in two substitutions (I281T, and T314A) in the predicted sequence of the FgCYP51A subunit, as well as seven (S195F, Q332V, V333L, L334G, M399T, E507G, and E267G) in the FgCYP51C subunit. In addition, it was also noted that the expression of the CYP51 genes in one of the mutants, which lacked point mutations, was significantly up-regulated in response to tebuconazole treatment. Conclusions These results provide useful data that allow for more rational use of tebuconazole in the control of F. graminearum, as well as for more effective monitoring of fungicide resistance in the field.

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol;Guo LJ,2022

2. de Sousa T, Ribeiro M, Sabença C, Igrejas G. The 10,000-year success story of wheat! Foods. 2021; 10: 2124.

3. Artificial selection trend of wheat varieties released in Huang-huai-hai region in China evaluated using DUS testing characteristics;Wang LY;Front Plant Sci,2022

4. Recent advances in the study of wheat protein and other food components affecting the gluten network and the properties of noodles;Zang P;Foods,2022

5. Amylase and xylanase from edible fungus Neurospora intermedia: production and characterization;Shahryari Z;Molecules,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3