Affiliation:
1. Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701
2. University of California Cooperative Extension, Salinas, CA 93901
Abstract
Spinach downy mildew disease, caused by the obligate pathogen Peronospora farinosa f. sp. spinaciae, is the most economically important spinach (Spinacia oleracea) disease. New races of this pathogen have been emerging at a rapid rate over the last 15 years. This is likely due to production changes, particularly in California, such as high-density plantings and year-round spinach production. As of 2004, 10 races of P. farinosa f. sp. spinaciae had been identified, and the spinach resistance locus RPF2 provided resistance to races 1 to 10. Based on disease reactions on a set of spinach differentials containing six hypothesized resistance loci (RPF1-RPF6), races 11, 12, 13, and 14 of P. farinosa f. sp. spinaciae were characterized based on samples collected in the past 5 years as part of this study. Race 11, identified in 2008, could overcome the resistance of spinach cultivars resistant to races 1 to 10. Spinach resistance loci RPF1, RPF3, and RPF6 provided resistance to race 11. Race 12 was identified in 2009 and could overcome the resistances of the RPF1 and RPF2 loci. The RPF3 locus was effective against race 12. Race 13 was identified in 2010 and could overcome the resistance imparted by the RPF2 and RPF3 loci, whereas the RPF1 locus was effective against race 13. Race 14 was similar to race 12 and caused identical disease responses on the standard differentials but could be distinguished from race 12 by its ability to cause disease on a number of newly released cultivars, including ‘Pigeon’, ‘Cello’, and ‘Celesta’. Five novel strains of P. farinosa f. sp. spinaciae were also identified. For example, isolate UA4711 of the pathogen, collected from Spain in 2011, was able to overcome the resistance imparted by the RPF1 and RPF3 loci, while RPF2 and RPF4 were effective against this strain. A total of 116 spinach cultivars, including 103 commercial lines and 13 differential cultivars, were evaluated for resistance to race 10 and the newly designated races 11, 12, 13, and 14.
Subject
Plant Science,Agronomy and Crop Science
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献