Fine Mapping and Identification of a Candidate Gene of Downy Mildew Resistance, RPF2, in Spinach (Spinacia oleracea L.)

Author:

Gao Shuo,Lu Tiantian,She Hongbing,Xu Zhaosheng,Zhang Helong,Liu Zhiyuan,Qian WeiORCID

Abstract

Downy mildew is a major threat to the economic value of spinach. The most effective approach to managing spinach downy mildew is breeding cultivars with resistance genes. The resistance allele RPF2 is effective against races 1–10 and 15 of Peronospora farinosa f. sp. Spinaciae (P. effusa) and is widely used as a resistance gene. However, the gene and the linked marker of RPF2 remain unclear, which limit its utilization. Herein, we located the RPF2 gene in a 0.61 Mb region using a BC1 population derived from Sp39 (rr) and Sp62 (RR) cultivars via kompetitive allele specific PCR (KASP) markers. Within this region, only one R gene, Spo12821, was identified based on annotation information. The amino acid sequence analysis showed that there were large differences in the length of the LRR domain between the parents. Additionally, a molecular marker, RPF2-IN12821, was developed based on the sequence variation in the Spo12821, and the evaluation in the BC1 population produced a 100% match with resistance/susceptibility. The finding of the study could be valuable for improving our understanding of the genetic basis of resistance against the downy mildew pathogen and breeding resistance lines in the future.

Funder

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China

Chinese Academy of Agricultural Sciences Innovation Project

China Agricultural Research System

Central Public-interest Scientific Institution Basal Research Fund

Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3