ExploitingPseudomonas syringaeType 3 secretion to study effector contribution to disease in spinach

Author:

Mendel MelanieORCID,Zuijdgeest Xander C. L.ORCID,Berg Femke van denORCID,Meer Leroy van derORCID,Elberse Joyce,Skiadas PetrosORCID,Seidl Michael FORCID,Ackerveken Guido Van denORCID,Jonge Ronnie deORCID

Abstract

AbstractIntensive cultivation practices of spinach create favourable conditions for the emergence and rapid evolution of pathogens, causing substantial economic damage. Research on host-pathogen interactions and host immunity in various leafy greens benefits from advanced biotechnological tools. The absence of specialised tools for spinach, however, constrains our understanding of spinach immunity. Here, we explored the potential of Type III Secretion System (T3SS)-mediated delivery to study the activity of pathogen effectors in spinach. We identified thePseudomonas syringaepv. tomatoDC3000 (DC3000) polymutant D36E, which lacks 36 known T3SS effectors (T3Es), as a promising T3SS-dependent effector delivery system in spinach. Unlike DC3000, which causes visual disease symptoms on spinach, D36E did not induce visible disease symptoms. Using D36E effector delivery, we screened 28 known DC3000 T3Es individually on spinach for effects on disease symptom development, bacterial proliferation reflecting bacterial virulence, and ROS bursts as a proxy for early immune responses. All three assays identified T3Es AvrE1 and HopM1 as crucial determinants of DC3000-like infection on spinach. Additionally, we observed that the T3E HopAD1 strongly suppressed ROS production in spinach. We present the first experimental evidence of plant pathogen effector activities in spinach. By establishing the D36E-effector delivery system in spinach, we pave the way for high-throughput effector studies on spinach. This system provides a critical link between genomics-based effector predictions in spinach pathogens and experimental validation, which is a crucial step for knowledge-driven resistance breeding in non-model crops like spinach.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3