Effects of exogenous nitric oxide treatment on grape berries against Botrytis cinerea and Alternaria alternata related enzymes and metabolites

Author:

Shi Jinxin1,Huang Dandan2,Du Yejuan1,Zhu Shuhua34,Hussain Zahoor5,Haider Muhammad Salman5,Anwar Raheel6

Affiliation:

1. Shihezi University, 70586, College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi, Xinjiang, China;

2. Shandong Agricultural University, 34734, Tai'an, China;

3. Shandong Agricultural University, 34734, No. 61 Daizong Street, Shandong, Tai'an, China, 271018

4. No. 61 Daizong StreetChina;

5. Ghazi University, Department of Horticulture, Dera Ghazi Khan, Pakistan;

6. University of Agriculture Faisalabad, 66724, nstitute of Horticultural Sciences, Faisalabad, Punjab, Pakistan;

Abstract

Postharvest losses of grape berries caused by the pathogenic fungi Botrytis cinerea and Alternaria alternata have been widely reported, and nitric oxide (NO) as a plant signaling molecule to control postharvest diseases has recently become an active research topic. This study aimed to investigate the regulatory effect of NO on the interaction between grape berries and fungi. During interactions between grape berries and pathogenic fungi, treatment with 10 mmol L-1 sodium nitroprusside (SNP, a NO donor) delayed the decline of the physiological quality of the grape berries and had positive effects on the weight loss rate, firmness, and respiration intensity. SNP treatment increased the activities of superoxide dismutase (SOD) and polyphenol oxidase (PPO) and inhibited the activities of peroxidase (POD) and catalase (CAT) of grape berries during the resistance to fungal pathogen infection. In addition, the increase in browning degree and the accumulation of hydrogen peroxide were inhibited by SNP treatment. In the phenylpropane metabolic pathway, the activities of phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4L), and 4-coumaric acid coenzyme A ligase (4CL) were increased during the activation of grape berries during the resistance to pathogen infection by SNP, and the intermediate metabolites lignin, flavonoids, and total phenols were accumulated. In addition, SNP treatment had a regulatory effect on the gene expression levels of SOD, POD, PPO, PAL, and 4CL. These results suggested that SNP treatment was effective for the preservation and disease reduction of grape berries.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3