Different Phenotypes, Similar Genomes: Three Newly Sequenced Fusarium fujikuroi Strains Induce Different Symptoms in Rice Depending on Temperature

Author:

Piombo Edoardo12,Bosio Pietro1,Acquadro Alberto1,Abbruscato Pamela3,Spadaro Davide12ORCID

Affiliation:

1. Department of Agricultural, Forestry and Food Sciences, University of Torino, Grugliasco, Turin 10095, Italy

2. Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, Grugliasco, Turin 10095, Italy

3. Parco Tecnologico Padano, Lodi, Lombardy 26900, Italy

Abstract

Bakanae, caused by the hemibiotrophic fungus Fusarium fujikuroi, is one of the most important diseases of rice and is attributed to up to 75% of losses, depending on the strain and environmental conditions. Some strains cause elongation and thin leaves, whereas others induce stunting and chlorotic seedlings. Differences in symptoms are attributed to genetic differences in the strains. F. fujikuroi strains Augusto2, CSV1, and I1.3 were sequenced with Illumina MiSeq, and pathogenicity trials were conducted on rice cultivar Galileo, which is susceptible to bakanae. By performing gene prediction, single nucleotide polymorphism (SNP) calling, and structural variant analysis with a reference genome, we show how an extremely limited number of polymorphisms in genes not commonly associated with bakanae disease can cause strong differences in phenotype. CSV1 and Augusto2 were particularly close, with only 21,887 SNPs between them, but they differed in virulence, reaction to temperature, induced symptoms, colony morphology and color, growth speed, fumonisin, and gibberellin production. Genes potentially involved in the shift in phenotype were identified. Furthermore, we show how temperature variation may result in different symptoms even in rice plants inoculated with the same F. fujikuroi strain. Moreover, all of the F. fujikuroi strains became more virulent at higher temperatures. Significant differences were likewise observed in gibberellic acid production and in the expression of both fungal and plant gibberellin biosynthetic genes.

Funder

European Union Horizon 2020

AGER Foundation

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3