Phytophthora capsici Populations Are Structured by Host, Geography, and Fluopicolide Sensitivity

Author:

Parada-Rojas Camilo H.1ORCID,Quesada-Ocampo Lina M.1ORCID

Affiliation:

1. Department of Entomology and Plant Pathology, and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7613

Abstract

Phytophthora capsici epidemics are propelled by warm temperatures and wet conditions. With temperatures and inland flooding in many locations worldwide expected to rise as a result of global climate change, understanding of population structure can help to inform management of P. capsici in the field and prevent devastating epidemics. Thus, we investigated the effect of host crop, geographical origin, fungicide sensitivity, and mating type on shaping the population structure of P. capsici in the eastern United States. Our fungicide in vitro assays identified the emergence of insensitive isolates for fluopicolide and mefenoxam. A set of 12 microsatellite markers proved informative to assign 157 P. capsici isolates to five distinct genetic clusters. Implementation of Bayesian structure, population differentiation, genetic diversity statistics, and index of association analysis, allowed us to identify population structure by host with some correspondence with genetic clusters for cucumber and squash isolates. We found weak population structure by state for geographically close isolates. In this study, we discovered that North Carolina populations stratify by fluopicolide sensitivity with insensitive isolates experiencing nonrandom mating. Our findings highlight the need for careful monitoring of local field populations, improved selection of relevant isolates for breeding efforts, and hypervigilant surveillance of resistance to different fungicides.

Funder

U.S. Department of Agriculture−Agricultural Research Service

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3