Regional Comparisons of Sensitivities of Phytophthora citrophthora and P. syringae Causing Citrus Brown Rot in California to Four New and Two Older Fungicides

Author:

Riley Nathan M.1,Förster Helga1,Adaskaveg James E.1ORCID

Affiliation:

1. Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521

Abstract

Isolates of the citrus brown rot pathogens Phytophthora citrophthora and P. syringae from the Inland Empire (IE) and Ventura Co. (VE) regions of southern California were evaluated for their sensitivity to ethaboxam, fluopicolide, mandipropamid, and oxathiapiprolin, and the previously published baselines that were generated for Central Valley (CV) isolates of California were expanded. Fungicides were generally more toxic to CV isolates of both species for all four fungicides. Specific differences were found in the toxicity of ethaboxam to P. syringae where CV isolates on average were 6.8 or 8.2 times more sensitive than those from the VE or IE regions, respectively. Based on the grouping of isolates in an unweighted pair-group method with arithmetic mean (UPGMA) dendrogram, as well as fastStructure analyses and plotting of principal component analyses (PCAs), differences in ethaboxam sensitivity could be related to differences in genetic background of the isolates. Isolates of P. citrophthora from the IE and VE had slightly reduced (i.e., 1.5×) sensitivity to mandipropamid as compared with isolates from the CV and were found on distinct branches in the UPGMA dendrogram. Differences in genetic background of less sensitive isolates within each species indicate that these two phenotypes emerged multiple times independently. IE and VE isolates of both species were sensitive to mefenoxam. Moderate resistance to potassium phosphite (EC50 values of 25 to 75 μg/ml) was present in IE and VE isolates of P. syringae, whereas some IE isolates of P. citrophthora were considered resistant with EC50 values of up to 113.69 μg/ml. Resistance to potassium phosphite did not relate to distinct genotypes.

Funder

Citrus Research Board of California

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3