Characterization of Field Isolates of Magnaporthe oryzae with Mating Type, DNA Fingerprinting, and Pathogenicity Assays

Author:

Li Jinbin1,Lu Lin2,Jia Yulin3,Wang Qun4,Fukuta Yoshimichi5,Li Chengyun6

Affiliation:

1. Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, Yunnan Province 650205, China

2. Flower Research Institute, YAAS, Kunming, China

3. United States Department of Agriculture–Agriculture Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR

4. Agricultural Environment and Resources Research Institute, YAAS, Kunming, China

5. Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa 907-0002, Japan

6. The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, Yunnan Province 650201, China

Abstract

Due to the harmful nature of the rice blast fungus, Magnaporthe oryzae, it is beneficial to characterize field isolates to help aid in the deployment of resistance (R) genes in rice. In the present study, 252 field isolates of M. oryzae, collected from rice fields of Yunnan Province in China, were assessed for mating type, DNA fingerprinting, and disease reactions to differential rice lines. In total, 94 isolates (37.3%) were MAT1-1 and 158 (62.7%) were MAT1-2 based on polymerase chain reaction assays, and some of them were verified with the tester isolates. All MAT1-1 and MAT1-2 isolates were virulent to some of the International Rice Research Institute–Japan International Research Center for Agricultural Sciences monogenic lines harboring 22 major resistance genes as differential varieties. Three simple-sequence repeat markers were used to examine genetic diversity in all isolates. The existence of regional patterns of genetic diversity, sexual reproduction potential, and pathogenicity suggests that M. oryzae populations have been independently asexually adapted in rice fields during crop cultivation.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3