MAT Loci Play Crucial Roles in Sexual Development but Are Dispensable for Asexual Reproduction and Pathogenicity in Rice Blast Fungus Magnaporthe oryzae

Author:

Wang Jiao-yu,Wang Shi-zhen,Zhang Zhen,Hao Zhong-na,Shi Xiao-xiao,Li Ling,Zhu Xue-ming,Qiu Hai-ping,Chai Rong-yao,Wang Yan-li,Li Lin,Liu Xiao-hong,Feng Xiao-xiao,Sun Guo-chang,Lin Fu-cheng

Abstract

Magnaporthe oryzae, a fungal pathogen that causes rice blast, which is the most destructive disease of rice worldwide, has the potential to perform both asexual and sexual reproduction. MAT loci, consisting of MAT genes, were deemed to determine the mating types of M. oryzae strains. However, investigation was rarely performed on the development and molecular mechanisms of the sexual reproduction of the fungus. In the present work, we analyzed the roles of two MAT loci and five individual MAT genes in the sex determination, sexual development and pathogenicity of M. oryzae. Both of the MAT1-1 and MAT1-2 loci are required for sex determination and the development of sexual structures. MAT1-1-1, MAT1-1-3 and MAT1-2-1 genes are crucial for the formation of perithecium. MAT1-1-2 impacts the generation of asci and ascospores, while MAT1-2-2 is dispensable for sexual development. A GFP fusion experiment indicated that the protein of MAT1-1-3 is distributed in the nucleus. However, all of the MAT loci or MAT genes are dispensable for vegetative growth, asexual reproduction, pathogenicity and pathogenicity-related developments of the fungus, suggesting that sexual reproduction is regulated relatively independently in the development of the fungus. The data and methods of this work may be helpful to further understand the life cycle and the variation of the fungus.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3