Comparing the Fungicide Sensitivity of Sclerotinia sclerotiorum Using Mycelial Growth and Ascospore Germination Assays

Author:

da Silva Lehner Miller1,Alves Kaique S.2,Del Ponte Emerson M.2ORCID,Pethybridge Sarah J.1ORCID

Affiliation:

1. Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A.

2. Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil

Abstract

The infection of the floral tissues of snap bean and other crops by Sclerotinia sclerotiorum, the causative agent of white mold, is by ascospores. Irrespective of the fungicide mode of action being evaluated, in vitro fungicide sensitivity tests are conducted almost exclusively using mycelial growth assays. This is likely because of difficulties and time involved in sclerotial conditioning required to produce apothecia and ascospores. The objective of this research was to compare estimates of fungicide sensitivity between mycelial growth and ascospore germination assays for S. sclerotiorum. Sensitivity assays were conducted using serial doses of three fungicides commonly used to control white mold: boscalid, fluazinam, and thiophanate-methyl. A total of 27 isolates were evaluated in replicated trials conducted for each fungicide and assay type. The effective concentration to reduce mycelial growth or ascospore germination by 50% (EC50) was estimated for each isolate, fungicide, and assay type. The median EC50 values obtained from ascospore germination assays were 52.7, 10.0, and 2.7 times higher than those estimated from the mycelial growth for boscalid, fluazinam, and thiophanate-methyl, respectively. No significant correlation was found between EC50 values estimated by the two methods. These findings highlight differences that may be important in evaluating the sensitivity of S. sclerotiorum given the fungicide mode of action and how they will be used in the field.

Funder

United States Department of Agriculture Specialty Crop Research Initiative

New York State Dry Bean Industry

United States Department of Agriculture, National Institute of Food and Agriculture

New York Agricultural Experiment Station

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3