Genome-Wide Association to Study the Host-Specificity Determinants of Xanthomonas perforans

Author:

Newberry Eric A.1,Minsavage Gerald V.2,Holland Auston1,Jones Jeffrey B.2ORCID,Potnis Neha1ORCID

Affiliation:

1. Department of Entomology and Plant Pathology, Auburn University, AL 36849

2. Department of Plant Pathology, University of Florida, FL 32611

Abstract

Xanthomonas perforans and X. euvesicatoria are the causal agents of bacterial spot disease of tomato and pepper, endemic to the Southeastern United States. Although very closely related, the two bacterial species differ in host specificity, where X. perforans is the dominant pathogen of tomato and X. euvesicatoria that of pepper. This is in part due to the activity of avirulence proteins that are secreted by X. perforans strains and elicit effector-triggered immunity in pepper leaves, thereby restricting pathogen growth. In recent years, the emergence of several pepper-pathogenic X. perforans lineages has revealed variability within the bacterial species to multiply and cause disease in pepper, even in the absence of avirulence gene activity. Here, we investigated the basal evolutionary processes underlying the host range of this species using multiple genome-wide association analyses. Surprisingly, we identified two novel gene candidates that were significantly associated with pepper-pathogenic X. perforans and X. euvesicatoria. Both candidates were predicted to be involved in the transport/acquisition of nutrients common to the plant cell wall or apoplast and included a TonB-dependent receptor, which was disrupted through independent mutations within the X. perforans lineage. The other included a symporter of protons/glutamate, gltP, enriched with pepper-associated mutations near the promoter and start codon of the gene. Functional analysis of these candidates revealed that only the TonB-dependent receptor had a minor effect on the symptom development and growth of X. perforans in pepper leaves, indicating that pathogenicity to this host might have evolved independently within the bacterial species and is likely a complex, multigenic trait.

Funder

Division of Integrative Organismal Systems

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3