A Sinorhizobium meliloti Lipopolysaccharide Mutant Induces Effective Nodules on the Host Plant Medicago sativa (Alfalfa) but Fails to Establish a Symbiosis with Medicago truncatula

Author:

Niehaus K.,Lagares A.,Pühler A.

Abstract

The specific Sinorhizobium meliloti lipopolysaccharide (LPS) mutant Rm6963 (A. Lagares, G. Caetano Anolles, K. Niehaus, J. Lorenzen, H. D. Ljunggren, A. Puhler, and G. Favelukes, J. Bacteriol. 174:5941-5952, 1992) was shown to be mutated in a region corresponding to a cloned 5-kb SstI DNA fragment that was able to complement the lpsB and lpsC mutants of S. meliloti described by Clover et al. (R. H. Clover, J. Kieber, and E. R. Signer, J. Bacteriol. 171:3961-3967, 1989). Sodium dodecyl sulfate polyacryla-mide electrophoresis revealed that the LPS-I and LPS-II fractions of the LPS mutant Rm6963 were shifted to lower molecular weights. While the majority of the Medicago spp. tested established an effective symbiosis with both the S. meliloti wild-type Rm2011 and the LPS mutant Rm6963, the latter induced ineffective nodules on M. truncatula. A light- and electron-microscopic analysis of the ineffective M. truncatula root nodules revealed that the bacteria were released from the infection threads but failed to colonize the plant cells effectively. The plant cytoplasm was filled with numerous vesicles, probably the result of a disturbed bacteroid development. Sections of ineffective M. truncatula root nodules induced by the LPS mutant Rm6963 showed brown, necrotic cells within the central nodule tissue that autofluoresced when viewed under UV light. These observations are best explained by a plant defense response. Evidently, the rhizobial LPS plays a role in plant-microbe signaling during the formation of M. truncatula nodules.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3