Sinorhizobium meliloti functions required for resistance to antimicrobial NCR peptides and bacteroid differentiation

Author:

Nicoud Quentin,Barrière Quentin,Busset Nicolas,Dendene Sara,Travin Dmitrii,Bourge Mickaël,Bars Romain Le,Boulogne Claire,Lecroël Marie,Jenei Sándor,Kereszt Atilla,Kondorosi Eva,Biondi Emanuele G.,Timchenko Tatiana,Alunni Benoît,Mergaert Peter

Abstract

AbstractLegumes of the Medicago genus form symbiosis with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of the intracellular symbionts. Members of the Nodule-specific Cysteine Rich peptide (NCRs) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts, including an additional broad-specificity peptide uptake transporter encoded by the yejABEF genes, lipopolysaccharide modifications mediated by lpsB and lpxXL as well as rpoH1, encoding a stress sigma factor. Mutants of these genes show in vitro a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The lpsB mutant nodule bacteria do not differentiate, the lpxXL and rpoH1 mutants form some seemingly fully differentiated bacteroids although most of the nodule bacteria are undifferentiated, while the yejABEF mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions including peptide transporters, the bacterial envelope structures and stress response regulators to resist the aggressive assault of NCR peptides in the nodule cells.ImportanceThe nitrogen fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plant needs. Some legumes, including Medicago spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the Medicago symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane composition and the stress response regulator RpoH1.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cell Cycle and Terminal Differentiation in Sinorhizobium meliloti;Cell Cycle Regulation and Development in Alphaproteobacteria;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3