Phylogenetic Relationships of Pseudomonas syringae pv. syringae Isolates Associated with Bacterial Inflorescence Rot in Grapevine

Author:

Hall Stewart J.1,Dry Ian B.2,Blanchard Christopher L.3,Whitelaw-Weckert Melanie A.4

Affiliation:

1. National Wine and Grape Industry Centre, Charles Sturt University, New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia 2650

2. CSIRO Agriculture, Hartley Grove, Urrbrae, SA, Australia 5064

3. ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University

4. National Wine and Grape Industry Centre, Charles Sturt University, New South Wales Department of Primary Industries

Abstract

Pseudomonas syringae pv. syringae causes extensive yield losses in wine-grape production in some Australian cool-climate vineyards. Putative P. syringae pv. syringae isolates from infected grapevines within a range of vineyards were genotyped using RNA polymerase β-subunit (rpoB) and multilocus sequence typing (MLST) using primers for glyceraldehyde-3-phosphate dehydrogenase (gapA), citrate synthase (gltA), DNA gyrase B (gyrB), and σ factor 70 (rpoD). The isolates were also evaluated for pathogenicity by inoculation of detached grapevine leaves. The isolates were grouped by MLST data into two well-supported clades, each containing a mixture of pathogenic and nonpathogenic grapevine isolates, indicating that P. syringae pv. syringae in Australian vineyards is genetically diverse. Each clade also contained P. syringae pv. syringae from nongrape hosts pathogenic to grapevine, demonstrating a lack of host specificity and possible potential for cross-infection of grape and other horticultural crops. Furthermore, the isolation of pathogenic P. syringae pv. syringae isolates from grapevine sucker shoots suggests that sucker shoots may allow overwintering of the pathogen. The vineyard quarantine status of P. syringae pv. syringae may need to be reconsidered, due to its easy dispersal through pruning equipment.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3