Genotype May Influence Bacterial Diversity in Bark and Bud of Vitis vinifera Cultivars Grown under the Same Environment

Author:

Awad Murad,Giannopoulos GeorgiosORCID,Mylona Photini V.ORCID,Polidoros Alexios N.ORCID

Abstract

Viticulture is globally an important economic activity, and grapevine microbiomes hold a significant role in influencing yield and quality. Earlier studies showed that cultivar and agronomic management affect grapevine microbiome structure and, potentially, the quality of the end product. While microbial dynamics and ecology were established on some grapevine tissues, i.e., leaves and grapes, there is less knowledge deciphering microbiomes on other tissues, i.e., barks and buds. Moreover, although the impact on the microbiome of the so-called “vitivinicultural terroir” is well established, there are limited data considering microbiomes of genetically diverse cultivars within the same environment. Our study aims to explore microbiome diversity on bud and bark tissues of 37 different grapevine cultivars under the same environment and agronomic management. We targeted the V2-9 regions of the 16S rRNA gene of the microbiomes in bark and buds at the onset of new vegetation and bud expansion using Ion Torrent sequencing technology. Our results show that these tissues display high bacterial diversity regardless of cultivars’ use. Proteobacteria, Bacteroidetes, and Actinobacteria were the most prevalent among 11 detected phyla. The genotype of the cultivar seems to affect bacterial diversity and structure (p < 0.001) within the same environment. Our approach highlights the efficiency of high-throughput sequencing to unfold microbiomes of several grapevine parts that could be an important source of microbial inoculation and an important molecular fingerprint of the wine and grape end products.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3