Moisture Prediction from Simple Micrometeorological Data

Author:

Chtioui Y.,Francl L. J.,Panigrahi S.

Abstract

Four linear regression methods and a generalized regression neural network (GRNN) were evaluated for estimation of moisture occurrence and duration at the flag leaf level of wheat. Moisture on a flat-plate resistance sensor was predicted by time, temperature, relative humidity, wind speed, solar radiation, and precipitation provided by an automated weather station. Dew onset was estimated by a classification regression tree model. The models were developed using micrometeorological data measured from 1993 to 1995 and tested on data from 1996 and 1997. The GRNN outperformed the linear regression methods in predicting moisture occurrence with and without dew estimation as well as in predicting duration of moisture periods. Average absolute error for prediction of moisture occurrence by GRNN was at least 31% smaller than that obtained by the linear regression methods. Moreover, the GRNN correctly predicted 92.7% of the moisture duration periods critical to disease development in the test data, while the best linear method correctly predicted only 86.6% for the same data. Temporal error distribution in prediction of moisture periods was more highly concentrated around the correct value for the GRNN than linear regression methods. Neural network technology is a promising tool for reasonably precise and accurate moisture monitoring in plant disease management.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3