Predicting Ascospore Release of Monilinia vaccinii-corymbosi of Blueberry with Machine Learning

Author:

Harteveld Dalphy O. C.1,Grant Michael R.1,Pscheidt Jay W.1,Peever Tobin L.1

Affiliation:

1. First and fourth authors: Department of Plant Pathology, Washington State University, Northwestern Research and Extension Center, 16650 State Route 536, Mount Vernon 98273; second author: School of Computer Science & Engineering, University of Washington, Box 352350, Seattle 98195; and third author: Department of Botany and Plant Pathology, Oregon State University, 1089 Cordley Hall, Corvallis 97331.

Abstract

Mummy berry, caused by Monilinia vaccinii-corymbosi, causes economic losses of highbush blueberry in the U.S. Pacific Northwest (PNW). Apothecia develop from mummified berries overwintering on soil surfaces and produce ascospores that infect tissue emerging from floral and vegetative buds. Disease control currently relies on fungicides applied on a calendar basis rather than inoculum availability. To establish a prediction model for ascospore release, apothecial development was tracked in three fields, one in western Oregon and two in northwestern Washington in 2015 and 2016. Air and soil temperature, precipitation, soil moisture, leaf wetness, relative humidity and solar radiation were monitored using in-field weather stations and Washington State University’s AgWeatherNet stations. Four modeling approaches were compared: logistic regression, multivariate adaptive regression splines, artificial neural networks, and random forest. A supervised learning approach was used to train the models on two data sets: training (70%) and testing (30%). The importance of environmental factors was calculated for each model separately. Soil temperature, soil moisture, and solar radiation were identified as the most important factors influencing ascospore release. Random forest models, with 78% accuracy, showed the best performance compared with the other models. Results of this research helps PNW blueberry growers to optimize fungicide use and reduce production costs.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3