Development of a Species-Specific PCR for Detection and Quantification of Meloidogyne hapla in Soil Using the 16D10 Root-Knot Nematode Effector Gene

Author:

Gorny Adrienne M.1ORCID,Wang Xiaohong12,Hay Frank S.1,Pethybridge Sarah J.1ORCID

Affiliation:

1. Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456

2. Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture Agricultural Research Service, Ithaca, NY 14850

Abstract

The Northern root-knot nematode (Meloidogyne hapla) is an important soilborne pathogen of numerous agricultural crops in temperate regions. Accurate detection and quantification is vital to supporting informed pest management decisions. However, traditional methods of manual nematode extraction and morphology-based identification are time-consuming and require highly specialized training. Molecular methods may expand the diagnostician’s toolkit beyond those methods that rely on this disappearing specialized skillset. However, molecular assays targeting the internal transcribed spacer region may lead to inaccurate results because of intraspecific variability. The Meloidogyne spp. effector gene 16D10 was assessed as a target for a SYBR Green I quantitative PCR (qPCR) assay for detection and quantification of M. hapla. M. hapla-specific qPCR primers were developed and evaluated for specificity against five M. hapla isolates and 14 other plant-parasitic nematodes. A standard curve was generated by relating the quantification cycle (Cq) to the log of M. hapla population densities artificially introduced into soil. The influence of soil inhibitors on quantitative amplification was assessed by generating a dilution series from DNA extracted from pure nematode cultures and inoculated soil. Extracts from soil produced significantly higher Cq values than those produced from pure culture extracts. The utility of the qPCR was evaluated using soil samples collected from three naturally infested potato fields, resulting in a significant positive relationship between populations estimated using qPCR and populations derived from manual counting. The qPCR developed in this study provides a useful method for detecting and quantifying M. hapla in soil and demonstrates the utility of effector genes in plant-parasitic nematode diagnostics. The ability to use effector genes as targets for qPCR and other molecular detection and quantification methods may open additional avenues of novel research and support development of improved species-level diagnostics.

Funder

U.S. Department of Agriculture National Institute of Food and Agriculture

USDA-NIFA

Northeast Sustainable Agriculture Research and Education

USDA Agricultural Research Service

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3