A real time PCR assay to detect and quantify root-knot nematodes from soil extracts

Author:

Hodson Amanda1,Celayir Tugce2,Quiroz Alonso Alejandra2

Affiliation:

1. University of California Davis College of Agricultural and Environmental Sciences, 115099, Entomology and Nematology, One Shields Ave, Davis, California, United States, 95616-8571;

2. University of California Davis College of Agricultural and Environmental Sciences, 115099, Entomology and Nematology, Davis, California, United States;

Abstract

Root-knot nematodes cause forking and stubbing of the growing carrot root tip, decreasing market value and reducing yield by up to 45%. Since crop damage by these nematodes depends on their initial population densities at planting, pre-plant detection of potentially low nematode numbers is critical for predicting future yield loss. The aim of this study was to overcome some of the drawbacks of the labor and time-intensive process of root-knot nematode identification and quantification by developing and field testing a real time PCR (qPCR) assay. Primers were designed targeting the root-knot nematode Meloidogyne incognita species complex, which includes M. incognita as well as the closely related Meloidogyne javanica and Meloidogyne arenaria. The qPCR assay successfully detected each species and showed little amplification for non-target nematode groups except for the sister group Meloidogyne enterolobii, which is not known to occur in California. Predicted nematode densities related well with microscopic counts of nematodes from prepared solutions, as well as from solutions extracted from field soil. In a greenhouse experiment, the qPCR assay distinguished between low, medium and high levels of M. incognita infection and qPCR predicted densities at planting were negatively related in linear models with final carrot fresh weight, length and diameter. These results suggest that qPCR assays could be a valuable diagnostic tool to predict nematode infections and prevent crop losses.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3