Symptom Development in Response to Combined Infection of In Vitro-grown Lilium longiflorum with Pratylenchus penetrans and Soilborne Fungi Collected from Diseased Roots of Field-grown Lilies

Author:

Lakshman Dilip1,Vieira Paulo2,Pandey Ruchi1,Slovin Janet3,Kamo Kathryn4

Affiliation:

1. Sustainable Agricultural Systems Laboratory, USDA, Beltsville, MD 20705

2. Floral and Nursery Plants Research Unit, U.S. National Arboretum, USDA, Beltsville, MD 20705, and Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061

3. Genetic Improvement of Fruits and Vegetables Laboratory, USDA, Beltsville, MD 20705

4. Floral and Nursery Plants Research Unit, U.S. National Arboretum, USDA, Beltsville, MD 20705

Abstract

Eight fungal isolates (ELRF 1 to 8) were recovered from necrotic roots of Easter lilies, Lilium longiflorum cv. Nellie White, grown in a field in the U.S. Pacific Northwest. The eight fungal isolates were identified by sequencing and molecular phylogenetic analyses based on their ITS rDNA region. Five isolates were identified as Fusarium oxysporum, two as F. tricinctum, and one as Rhizoctonia sp. AG-I. This constitutes the first report of Rhizoctonia sp. AG-I infecting lilies worldwide and the first report of F. tricinctum infecting lilies in the United States. To study and validate their pathogenicity, pure cultures of each isolate were used to infect the roots of Easter lily plants growing in vitro. In addition, Easter lily plants growing in vitro were infected either with or without Pratylenchus penetrans, the root lesion nematode, prior to placing a culture plug of fungus 1 cm from a lily root. Pratylenchus penetrans is a nematode species commonly found in the sampled fields. The presence of both nematode and Rhizoctonia sp. AG-I isolate ELRF 3 in infected lilies was evaluated by molecular analyses, confirming the infection of roots 3 days after inoculation, prior to development of disease symptoms. Necrosis and root rot developed more rapidly with all eight fungal isolates when there had been prior infection with P. penetrans, the major nematode parasitizing Easter lily roots in the field in Oregon.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3