Fusarium fujikuroi Species Complex Associated With Rice, Maize, and Soybean From Jiangsu Province, China: Phylogenetic, Pathogenic, and Toxigenic Analysis

Author:

Qiu Jianbo1ORCID,Lu Yunan2,He Dan1,Lee Yin-Won3ORCID,Ji Fang14,Xu Jianhong15,Shi Jianrong15

Affiliation:

1. Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Modern Grain Circulation and Safety; and Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

2. College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China

3. Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea

4. Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa

5. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Species belonging to the Fusarium fujikuroi species complex (FFSC) are of vital importance and are a major concern for food quantity and quality worldwide, as they not only cause serious diseases in crops but also produce various mycotoxins. To characterize the population structure and evaluate the risk of poisonous secondary metabolites, a total of 237 candidate strains were isolated from rice, maize, and soybean samples in Jiangsu Province, China. Species identification of the individual strain was accomplished by sequencing the translation elongation factor 1α gene (TEF-1α) and the fumonisin (FB) synthetic gene (FUM1). The distribution of Fusarium species among the different crops was observed. The maize seeds were dominated by F. proliferatum (teleomorph, Gibberella intermedia) and F. verticillioides (teleomorph, G. moniliformis), whereas F. fujikuroi (teleomorph, G. fujikuroi) was the most frequently isolated species from rice and soybean samples. In addition, phylogenetic analyses of these strains were performed, and the results suggested clear groups showing no obvious relationship with the origin source. FFSC species pathogenicity and toxigenicity were studied. All of the species reduced the rice seed germination rate, with no significant differences. F. fujikuroi showed two distinct patterns of influencing the length of rice seedlings, which were correlated with FBs and gibberellic acid synthesis. FBs were mainly produced by F. verticillioides and F. proliferatum. F. proliferatum and F. fujikuroi also produced moniliformin and beauvericin. The toxigenicity of F. andiyazi (teleomorph, G. andiyazi) was extremely low. Further analysis indicated that the sequence variations in TEF-1α and the differences in the expression levels of the toxin synthesis genes were associated with the diversity of secondary metabolites in F. fujikuroi strains. These findings provide insight into the population-level characterization of the FFSC and might be helpful in the development of strategies for the management of diseases and mycotoxins.

Funder

National Natural Science Foundation of China

Jiangsu Agriculture Science and Technology Innovation Fund

International Science & Technology Cooperation Program of China

Shanghai Agriculture Applied Technology Development Program, China

National Key R&D Program of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3