Traces of Hymenoscyphus fraxineus in Northeastern Europe Extend Further Back in History than Expected

Author:

Agan Ahto12ORCID,Tedersoo Leho2,Hanso Märt1,Drenkhan Rein1

Affiliation:

1. Institute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia

2. Natural History Museum and Institute of Ecology and Earth Sciences, University of Tartu, 50411 Tartu, Estonia

Abstract

Herbaria are a promising but still poorly applied information source for retrospective microbiological studies. In order to find any evidence of the virulent European origin of ash dieback agent Hymenoscyphus fraxineus and other fungal pathogens, we analyzed 109 leaf samples from three different Estonian botanical herbaria, sampled during 171 years from 20 ash species and cultivars, using a PacBio third-generation sequencing of the fungal internal transcribed spacer ITS1-5.8S-ITS2 ribosomal DNA region. We identified a large amount of saprotrophic fungi naturally colonizing ash leaves. Hymenoscyphus fraxineus colonized a Fraxinus chinensis subsp. rhynchophylla specimen and a F. chinensis specimen collected from Tallinn Botanic Garden in July 1978 and July 1992, respectively. The samples originated from trees grown in this garden from seeds collected from Shamora, Far-East Russia, in 1961 and from a Beijing botanical garden in eastern China in 1985, respectively. Repeated subsequent DNA extraction, real-time quantitative PCR, and Sanger and Illumina sequencing confirmed our findings of these apparently oldest cases of the ash dieback agent in Europe. These results show that H. fraxineus evidently was present in Estonia 19 years earlier than our previous data from fungal herbaria documented and 14 years before the first visible damage of ash trees was registered in Poland. Because we found no evidence of the saprotrophic H. albidus from earlier mycological and botanical herbarium specimens, the presence of H. albidus in Estonia remains questionable.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3