A Novel Multidomain Polyketide Synthase Is Essential for Zeamine Production and the Virulence of Dickeya zeae

Author:

Zhou Jianuan,Zhang Haibao,Wu Jien,Liu Qiongguang,Xi Pinggen,Lee Jasmine,Liao Jinling,Jiang Zide,Zhang Lian-Hui

Abstract

Dickeya zeae is the causal agent of the rice foot rot disease, but its mechanism of infection remains largely unknown. In this study, we identified and characterized a novel gene designated as zmsA. The gene encodes a large protein of 2,346 amino acids in length, which consists of multidomains arranged in the order of N-terminus, β-ketoacyl synthase, acyl transferase, acyl carrier protein, β-ketoacyl reductase, dehydratase. This multidomain structure and sequence alignment analysis suggest that ZmsA is a member of the polyketide synthase family. Mutation of zmsA abolished antimicrobial activity and attenuated the virulence of D. zeae. To determine the relationship between antimicrobial activity and virulence, active compounds were purified from D. zeae EC1 and were structurally characterized. This led to identification of two polyamino compounds, i.e., zeamine and zeamine II, that were phytotoxins and potent antibiotics. These results have established the essential role of ZmsA in zeamine biosynthesis and presented a new insight on the molecular mechanisms of D. zeae pathogenicity.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3