Author:
Zhou Jianuan,Zhang Haibao,Wu Jien,Liu Qiongguang,Xi Pinggen,Lee Jasmine,Liao Jinling,Jiang Zide,Zhang Lian-Hui
Abstract
Dickeya zeae is the causal agent of the rice foot rot disease, but its mechanism of infection remains largely unknown. In this study, we identified and characterized a novel gene designated as zmsA. The gene encodes a large protein of 2,346 amino acids in length, which consists of multidomains arranged in the order of N-terminus, β-ketoacyl synthase, acyl transferase, acyl carrier protein, β-ketoacyl reductase, dehydratase. This multidomain structure and sequence alignment analysis suggest that ZmsA is a member of the polyketide synthase family. Mutation of zmsA abolished antimicrobial activity and attenuated the virulence of D. zeae. To determine the relationship between antimicrobial activity and virulence, active compounds were purified from D. zeae EC1 and were structurally characterized. This led to identification of two polyamino compounds, i.e., zeamine and zeamine II, that were phytotoxins and potent antibiotics. These results have established the essential role of ZmsA in zeamine biosynthesis and presented a new insight on the molecular mechanisms of D. zeae pathogenicity.
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献