Unravelling the aetiology of Dickeya zeae using polyphasic approaches for bacterial stalk rot in maize

Author:

Jatoth Rajender12,Kashyap Abhijeet S.3ORCID,Babu P. Lokesh1,Singh Dinesh1ORCID,Gogoi Robin1,Manzar Nazia3,Geat Neelam1,Muthusamy Vignesh4,Padaria J. C.5

Affiliation:

1. Division of Plant Pathology Indian Council of Agricultural Research (ICAR)‐Indian Agricultural Research Institute New Delhi India

2. Department of Plant Pathology Professor Jayashankar Telanagana State Agricultural Univeristy Telangana India

3. ICAR‐National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India

4. Division of Genetics ICAR‐Indian Agricultural Research Institute New Delhi India

5. Division of Molecular Biology and Biotechnology ICAR‐Indian Agricultural Research Institute New Delhi India

Abstract

AbstractBacterial stalk rot (BSR), caused by Dickeya zeae (syn. Erwinia chrysanthemi pv. zeae), has emerged as a significant disease affecting maize crops worldwide. In this study, symptomatic maize plants were collected from diverse agroclimatic zones in India over the period of kharif 2019–2021. Various approaches, including pathogenicity tests, cultural characteristics, biochemical profiling and molecular analysis, were employed to accurately identify the collected bacterial isolates as Dickeya. Pathogenicity assessments were conducted on 40‐day‐old maize plants, following Koch's postulates, as well as through potato maceration assays. Furthermore, cross‐infectivity studies were conducted on rice, potato, tomato and banana plants. Phenotypic and biochemical characterization confirmed that all the isolates belonged to the Dickeya genus. Additionally, PCR amplification of a pel gene fragment, specific to the genus Dickeya, further verified the pathogenic isolates as Dickeya. Molecular characterization studies were performed on four isolates (UKMDZ‐3, PBMDZ‐7, TSMDZ‐11 and HPMDZ‐16), selected to represent distinct maize agroclimatic zones and four states of India, and which caused severe infections on susceptible maize cv. Early Composite. Amplification of six characteristic genome regions (16S rRNA, recN, gyrB, dnaX, recA and dnaJ) from these isolates facilitated individual and concatenated gene phylogenetic analyses, confirming their resemblance to Dickeya zeae. This study represents the first comprehensive molecular analysis of D. zeae isolates from India, providing valuable insights for future crop improvement strategies. The findings contribute to our understanding of the genetic basis of BSR in maize and offer potential avenues for genetic enhancement to mitigate the disease's impact on maize cultivation.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3