Evaluation of DNA Amplification Methods for Improved Detection of “Candidatus Liberibacter Species” Associated with Citrus Huanglongbing

Author:

Li Wenbin1,Hartung John S.2,Levy Laurene1

Affiliation:

1. National Plant Germplasm and Biotechnology Laboratory, USDA-APHIS-PPQ-CPHST, Beltsville, MD 20705

2. Fruit Laboratory, USDA-ARS, Beltsville, MD 20705

Abstract

Citrus huanglongbing (HLB), also known as citrus greening or citrus yellow shoot, is considered the most serious disease of citrus worldwide. The disease has Asian, African, and American forms caused by “Candidatus Liberibacter asiaticus”, “Ca. L. africanus”, and “Ca. L. americanus”, respectively, which can be spread efficiently by the psyllid vectors Diaphorina citri and Trioza erytreae and through contaminated plant materials. Infected citrus groves are usually destroyed or become unproductive in 5 to 8 years. The presumed low concentration and uneven distribution of the pathogens in citrus plants and vector insects make the phloem-limited bacterium difficult to detect consistently. In this study, we compared and validated four conventional polymerase chain reaction (PCR)-based protocols, one loop-mediated isothermal amplification (LAMP) protocol, and three TaqMan real-time PCR protocols. The detection sensitivity of the validated conventional PCR assays reported are improved compared with the original protocols. All of the validated conventional and the newly developed real-time methods were reliable for confirmatory tests for the presence of “Ca. Liberibacter spp.” in symptomatic samples. There were no differences in assay specificity among the standard format PCR-based methods evaluated. The TaqMan real-time PCR was 10- to 100-fold more sensitive than conventional PCR and LAMP, showing the potential to become a valuable tool for early detection and identification of “Ca. Liberibacter spp.” prior to the appearance of disease symptoms. The methods validated in this study will be very useful for regulatory response, effective management of infected trees, and development of a “Ca. Liberibacter spp.”-free nursery system.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3